
Published: 2/9/2021 EABS Device Profile R93.doc

Copyright @ 2021 Real Time Objects & Systems, LLC page 1

The following was extracted from;

“Electric Brakes ABS Device Profile & Test Plan”

This document provides an overview of the communications interfaces utilizes by

the EABS Controller designed by Real Time Objects & Systems, LLC (RTOS) and

is provided as an example of a portion of the contents of an Extensible Realtime

Application Environment (XRAE) “Device Profile”. A Device Profile is the core

document supporting any control device, which contains; requirements, hardware

operational descriptions, User Application Programs (UAP) operational

descriptions, object descriptions, system operational descriptions, test plans, test

results and references other documents such as hardware schematics, UAP

drawings, test tools, test log files and so forth. The User Application Program

drawings are “software schematics” of each application program where the

executable code is a one to one mapping of function icons to function code.

The RTOS Process intentionally deviates from traditional product development

documentation as XRAE assets are maintained throughout the development

process and “match the implementation” when product is released and thus utilized

for product support purposes as well as reuse of these assets for other new product

developments. XRAE improves product quality and significantly reduces product

development time by utilizing a common architecture (design through

implementation), implementation rules and massive reuse of “drag and drop”

assets due to the XRAE architecture. Objects defined and utilized in products

created in 2004 are still utilized today, although supporting documentation has

improved through the years and a few methods have been added to a few of the

initial object classes.

The contents of this document shall demonstrate some of the naming convention

rules of XRAE that facilitate reuse of said assets.

Published: 2/9/2021 EABS Device Profile R93.doc

Copyright @ 2021 Real Time Objects & Systems, LLC page 2

6 Networking

XRAE control devices communicate with other control devices via the Trailer

CAN (TCAN) network utilizing various Real Time Objects & Systems, LLC

(RTOS) protocols. Specifically the EABS Controller currently communicates

with User Interfaces (UI), the tow vehicle and personal computers.

Relative to the EABS Controller communicating with UI devices the following

types of messages are supported;

 Configuration messages for tuning EABS Controller and enabling/disabling

various functionality

 Monitor and test messages used to diagnose the operation of sensors, brake

magnets, brake controller, power system, EABS Controller operation and so

forth.

Communication interfaces utilize various standardized Extensible Realtime

Application Environment (XRAE) protocols;

 Explicit/Interpreted messaging protocols which interact with instances of

public (network accessible) object classes.

 IO message protocols are messages where the CAN Identifier value

determines the content of the message where the data at a specific offset

within the message has a fixed meaning including;

o a protocol for parameter value editing,

o protocols for status/data monitoring screens,

o protocols for debug/diagnostic messages,

o protocols for tow vehicle communications,

o protocols for sharing data with other trailer control devices.

The IO Message protocols are defined for each control device, where three of the

following standardized protocols are used across the majority of XRAE vendors’

control devices to simplify product support.

 The “Command Message” application protocols are used by UI and test

devices to select the production of specific IO message data. The request

message contains the “requested screen number” and an incrementing

Published: 2/9/2021 EABS Device Profile R93.doc

Copyright @ 2021 Real Time Objects & Systems, LLC page 3

transaction identifier (XID), where upon receipt the EABS Controller

produces the respective Command Response Message. See “Display.h” for

declaration values of the Screen Numbers for a specific control device. Thus

when a new screen is selected, the screen number in the command request

message changes and the EABS Controller immediately changes the

contents of the command response message being sent and often imitates

cyclic production of a Debug Message.

 “Parameter Editing Message” protocols are used to edit the values of

instances of the Parameter Object Class by a UI device, utilized to

configure/calibrate the operational behavior of a control device. See

“UAP_Parameter.h” for parameter instances supported for a specific control

device.

 “Fault Queue Message” protocols are defined to retrieve any active fault

codes, unique to each control device, in a common way. See

“System_Defines.h” for a list of fault codes for a specific control device.

 “Debug Message” protocols are determined by value contained within a

specific instance of a Parameter Object class, where Debug Messages are

produced cyclically.

 “Vehicle Message” protocols are defined to consume messages sent from a

control device in the tow vehicle, typically plugged into the OBDII

connector.

Although the UAP that supports the respective IO message can provide any desired

communications behavior, data monitoring IO messages are generally produced

cyclically at an interval dependent upon the value contained in the

TIMERELAY_Preset property of the respective On Delay Timed Relay object

instance within the respective communications UAP. The following sub-sections

describe the UAPs that support these selected protocols.

NOTE: XRAE utilizes its object classes and UAPs to provide functionality unique

to a specific control device as well as all other internal functionality. For example;

UAP_FAULTS.c adds/removes fault codes from a FIFO_Queue object where a

Command Message then provides a standardized interface to retrieve these fault

codes from any control device, from any vendor, in any industry. By viewing

UAP_FAULTS.doc shows the condition(s) that set and remove each fault code

(PLC logic on steroids).

Published: 2/9/2021 EABS Device Profile R93.doc

Copyright @ 2021 Real Time Objects & Systems, LLC page 4

6.1 Explicit Message Protocol

The Explicit network interface provides access to selected object classes within a

control device where EABS Controller consumes explicit request messages at the

default CAN_ID = 0x540 + Address = 0x54B and responds to these messages at

CAN_ID = 0x500 + Address = 0x50B. The request and response protocols are

shown in Table 6-1 and Table 6-2 where the following values of the variables

below are the same for all XRAE control devices within all vendors products in all

industries;

 Class Identifier values are unique to the object class. See

“SystemDefines.h” values reserved by the System Architecture (XRAE).

 Service Identifier values are reserved for all object classes. See

“SystemDefines.h” values reserved by XRAE.

 Instance Identifiers are unique to the specific control device except for a few

instances that are reserved by XRAE to uniquely identify a control device.

See “UAP_ClassName.h” for device specific values.

 Attribute/Property Identifiers are unique to the object class where

consistency across object classes for property identifiers is encouraged for

“programmable devices”. See “ClassName.h” for values reserved by

XRAE.

NOTE: XRAE utilizes standardized names when implementing various User

Application Programs (UAP) common to most control devices, solely for the

purpose of simplifying product support/re-use where an engineer not familiar with

a specific control device intuitively knows where to look to make modifications to

a product they have never supported. Most new products reuse and modify an

existing UAP to provide similar functionality when the actual logic within said

UAPs are similar. This includes the ability to reuse and edit existing test plans, test

code, UAP operational descriptions and other support assets reducing development

time and thus providing consistent behavior across all products. XRAE defines a

development process, control architecture, control objects, network protocols,

naming standards, coding standards and so forth all which complement one another

to facilitate asset re-use, improve product quality, reduce development time and

thus reduce development time.

XRAE control systems seldom utilize explicit message protocols for control

purposes but they are utilized by support tools (personal computer software) to

configure, program and/or test a control device. The explicit protocol is supported

Published: 2/9/2021 EABS Device Profile R93.doc

Copyright @ 2021 Real Time Objects & Systems, LLC page 5

by “UAP_CAN_EXPLICIT_RTOS.c” exactly consistent with logic drawing

“UAP_CAN_EXPLICIT_RTOS.doc”.

Byte Data Type Description Value DESCRIPTION

x UINT16 CAN Identifier 0x54B PC  EABS Controller

x Length 8

0 UINT8 Class Identifier See “SystemDefines.h”

1 UINT8 Service Identifier See “SystemDefines.h”

2 UINT8 Instance Identifier See “UAP_ClassName.h”

3 UINT8 --Service specific -- Often Property Identifier

4 UINT8 --Service specific --

5 UINT8 --Service specific --

6 UINT8 --Service specific --

7 UINT8 --Service specific --

Table 6-1: Explicit Message Request Protocol

NOTE: The ENGINE_CAN_ClassParser() method in the Engine Object in all

XRAE control devices consume explicit request messages where this method then

calls the class parser for the selected object classes. For example, if the Class

Identifier in the Explicit Request Message is CID_RTOS_TIME_RELAY [0x03]

this method then calls TIMERELAY_Parser() which generates an Explicit

Response Message, if the Class Identifier in Explicit Request Message contains the

value CID_RTOS_DATA_BRANCH [0x19] ENGINE_CAN_ClassParser() then

calls DATABRANCH_Parser(), and so on. If a vendor chooses to support this

public interface to an object class a call to the respective class parser is included in

ENGINE_CAN_ClassParser() and if external access is not provided a call is not

included and the respective code for the objectclass_Parser() is commented out.

Seldom is external access provided to all object classes except in externally

programmable control devices. Similarly if a new UAP drawings includes an icon

for an object class not currently supported by a control device, the engineer “drags

and drops” three files into the project to support it. For example, assume a selector

switch object icon is used in a new UAP the following files are then dropped into

the project; “Selector.c” (object function conde and declarations), “Selector.h”

(object class declarations) and “UAP_Selector.h” (instance declarations referenced

in UAPs). See “realtimeobjects.net/training” for training materials for creating

new control devices.

Published: 2/9/2021 EABS Device Profile R93.doc

Copyright @ 2021 Real Time Objects & Systems, LLC page 6

Byte Data Type Description Value DESCRIPTION

x UINT16 CAN Identifier 0x50B EABS Controller  PC

x Length

0 UINT8 Response Service Identifier See “SystemDefines.h”

1 UINT8 --Service specific --

2 UINT8 --Service specific --

3 UINT8 --Service specific --

4 UINT8 --Service specific --

5 UINT8 --Service specific --

6 UINT8 --Service specific --

7 UINT8 --Service specific --

Table 6-2: Explicit Message Response Protocol

Published: 2/9/2021 EABS Device Profile R93.doc

Copyright @ 2021 Real Time Objects & Systems, LLC page 7

6.2 Command Message Protocols

Upon consumption of a Command Message produced by another control device

the EABS Controller shall produce its response message data determined by the

received “Screen Number”. Consumption of the command message protocol is

supported by “UAP_CAN_CONS_CMD_MSG.c” and the response message

production protocols are supported by “UAP_CAN_PROD_CMD_MSG.c” where

the declarations of the Screen Number values are contained within “Display.h”.

Byte Data Type Description Value Values

x UINT16 CAN Identifier 0x44B UI  EABS

x Length 0-8

0 UINT8 SCREEN NUMBER 0-255 Values unique to each control device are defined within the

“Display.h” for each product.

1 UINT8 XID 0-255 Increments for every message sent

2-7 Screen dependent

Table 6-3: Command Request Message (UI  EABS)

Receipt of a Command Request Message often initiates cyclic production of a

Debug Message after the Command Response Message is sent by the EABS

Controller. Consistent with most CAN networks, the CAN Identifier used to

produce a message identifies the content of the produced message. In the case of

the Screen Messages, when synchronization is required (subnet hops) between the

control device sending the Command Request Message and the EABS Controller

producing the selected Screen Message, two standardized variables are optionally

contained with the command response message. The first optional byte (byte 0)

confirms receipt of the Command Request Message by echoing the Screen Number

and the second byte (byte 1) optionally echoes the transaction identifier (XID) of

the last consumed Command Request Message. The EABS Controller thus

produces Command Response Messages containing the Screen Number and XID

values. See “UAP_CAN_PROD_CMD_MSG.c” for specific message code or

UAP_CAN_PROD_CMD_MSG.doc” for logic drawings showing the Command

Response Message contents based upon consumed Screen Number values declared

in “Display.h” and optionally Debug Messages produced for a selected screen

number.

Byte Data

Type

Description Value Values

x UINT16 CAN Identifier 0x40B EABS  DISPLAY

x Length 0-8

Published: 2/9/2021 EABS Device Profile R93.doc

Copyright @ 2021 Real Time Objects & Systems, LLC page 8

Byte Data

Type

Description Value Values

0 UINT8 SCREEN NUMBER

(optional)

0-255 Contains the “response screen number”..See “Display.h”

for screen declaration values.

1 UINT8 REMOTE XID (optional)

2-7 Screen dependent Screen Number dependent data

Table 6-4: Command Response Message (EABS  other)

Byte Data

Type

Description Value Values

x UINT16 CAN Identifier 0x40B EABS  DISPLAY

x Length 0-8

0-7 Screen dependent Screen Number dependent data

Table 6-5: Command Response Message (EABS  other)

Published: 2/9/2021 EABS Device Profile R93.doc

Copyright @ 2021 Real Time Objects & Systems, LLC page 9

6.3 Debug Message Protocols

Debug Messages come in various forms within XRAE control devices, where like

all other messages these produced messages contain properties from various object

classes to test the operation of specific functionality within a control device.

EXAMPLE: “UAP_PID_LF.c” in the EABS Controller modulates the left

front brake magnet based upon various criteria, where monitoring selected

values within this UAP during product testing are utilized to verify its

operation meets or exceeds the design criteria. In practice a specific Debug

Message Number is selected, where object properties are produced at an

extremely high rate on TCAN, whose contents are captured in a file by a

TCAN monitoring tool, where the captured file is then imported into an

excel spreadsheet where the values are plotted for review. A trailer

simulation module is connected to EABS module which simulates the

operation of the braking system, including generating wheel sensor pulses,

blue wire pulses, varying battery voltages and so forth based upon IO

messages received from PC test software. When operational defects are

identified by viewing the excel plots, the UAP within EABS Controller are

modified and tests rerun to verify elimination of the identified defect.

Debug messages are often captured during road testing to identify UAP

defects as well. When defects are detected actual trailer wheel sensor and

blue wire values captured in road test files and are then applied to the

simulator to generate the exact same conditions captured during trailer

testing and thus used to isolate a newly identified defect and eliminate it.

The simulator module utilizes XRAE objects and UAPs and PC tools

interact with these objects using debug messages and explicit messages.

See “UAP_CAN_PROD_DEBUG.c” code and “UAP_CAN_PROD_DEBUG.doc”

drawing for the various produced debug messages. The specific debug message

produced, and when it is produced, is determined by a value contained within a

specific instance of the parameter object class, where “UAP_PARAMETER.h”

contains the declaration of the various instances for a control device where within

the EABS Controller instance “PARAM_DEBUG_MSG” sets the debug message

number produced. When this parameter is set to a supported value production of

the respective message begins, where the default parameter value is zero, resulting

in no message being produced. Thus supporting Debug Messages does not require

an instance of the Consumer Object and associated UAP code space to initiate

message production.

Published: 2/9/2021 EABS Device Profile R93.doc

Copyright @ 2021 Real Time Objects & Systems, LLC page 10

NOTE: New debug messages are often added to “UAP_CAN_PROD_DEBUG.c”

during system testing, commenting out other debug messages when additional code

space is needed, making these messages available for reuse during final product

acceptance testing. Some of these debig messages may remain in product release

code should they be useful for actual trailer testing by qualified service personnel.

Further details relative to the use of various messages are described in the

associated UAP drawing, UAP operational descriptions in the Device Profile.

